- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Montclare, Jin Kim (3)
-
Katyal, Priya (2)
-
Mahmoudinobar, Farbod (2)
-
Punia, Kamia (2)
-
Renfrew, P. Douglas (2)
-
Bonneau, Richard (1)
-
Britton, Dustin (1)
-
Frezzo, Joseph A. (1)
-
Gibson, Halle (1)
-
Jia, Sihan (1)
-
Jones, Serena Monique (1)
-
Liu, Chengliang (1)
-
Meleties, Michael (1)
-
Monkovic, Julia (1)
-
Monkovic, Julia M. (1)
-
Monkovic, Julia Marie (1)
-
Nagapurkar, Akash (1)
-
Nicolas, Madeleine (1)
-
Noland, Damon (1)
-
Sun, Jonathan W. (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The ability to engineer a solvent-exposed surface of self-assembling coiled coils allows one to achieve a higher-order hierarchical assembly such as nano- or microfibers. Currently, these materials are being developed for a range of biomedical applications, including drug delivery systems; however, ways to mechanistically optimize the coiled-coil structure for drug binding are yet to be explored. Our laboratory has previously leveraged the functional properties of the naturally occurring cartilage oligomeric matrix protein coiled coil (C), not only for its favorable motif but also for the presence of a hydrophobic pore to allow for small molecule binding. This includes the development of Q, a rationally designed pentameric coiled coil derived from C. Here, we present a small library of protein microfibers derived from the parent sequences of C and Q bearing various electrostatic potentials with the aim to investigate the influence of higher-order assembly and encapsulation of candidate small molecule, curcumin. The supramolecular fiber size appears to be well-controlled by sequence-imbued electrostatic surface potential, and protein stability upon curcumin binding is well correlated to relative structure loss, which can be predicted by in silico docking.more » « less
-
Monkovic, Julia Marie; Jones, Serena Monique; Nicolas, Madeleine; Katyal, Priya; Punia, Kamia; Noland, Damon; Montclare, Jin Kim (, Journal of Biological Education)null (Ed.)
-
Sun, Jonathan W.; Thomas, Joseph S.; Monkovic, Julia M.; Gibson, Halle; Nagapurkar, Akash; Frezzo, Joseph A.; Katyal, Priya; Punia, Kamia; Mahmoudinobar, Farbod; Renfrew, P. Douglas; et al (, Journal of Peptide Science)Short interfering RNA (siRNA) therapeutics have soared in popularity due to their highly selective and potent targeting of faulty genes, providing a non‐palliative approach to address diseases. Despite their potential, effective transfection of siRNA into cells requires the assistance of an accompanying vector. Vectors constructed from non‐viral materials, while offering safer and non‐cytotoxic profiles, often grapple with lackluster loading and delivery efficiencies, necessitating substantial milligram quantities of expensive siRNA to confer the desired downstream effects. We detail the recombinant synthesis of a diverse series of coiled‐coil supercharged protein (CSP) biomaterials systematically designed to investigate the impact of two arginine point mutations (Q39R and N61R) and decahistidine tags on liposomal siRNA delivery. The most efficacious variant, N8, exhibits a twofold increase in its affinity to siRNA and achieves a twofold enhancement in transfection activity with minimal cytotoxicity in vitro. Subsequent analysis unveils the destabilizing effect of the Q39R and N61R supercharging mutations and the incorporation of C‐terminal decahistidine tags on α‐helical secondary structure. Cross‐correlational regression analyses reveal that the amount of helical character in these mutants is key in N8's enhanced siRNA complexation and downstream delivery efficiency.more » « less
An official website of the United States government
